Oxidation number (ON)

In a covalent bond, the electrons (always 2 in number) are not shared equally. This depends on the difference in electronegativity between the two atoms forming the bond. Oxidation numbers refer to the number of charges an atom in a molecule would have if all the bonds were broken.

Example:
$$H-O-H \longrightarrow H^+ O^{2-} H^+$$

- It is a way to keep track of the electrons in an oxidation-reduction reaction (redox).
- The term "oxidation state" is mostly used for ionic compounds where the species have a real charge.
- A compound (molecule or ion) is said to be oxidized if its oxidation number increases in a reaction.
- On the other hand, if a compound is **reduced,** its **oxidation number decreases** in a reaction.

(+3) (+2) ON decreases
$$Fe^{3+} + e^{-} Fe^{2+} reduction$$

species	Oxidation number	example	exception
pure elements	0	O ₂ , Li, Cu, F ₂	
single ions	valence	$Fe^{3+} = +3, S^{2-} = -2$	
F in compounds	-1	HF, SF ₆	
O in compounds	-2	H ₂ O, CO, NO ₂	peroxide H_2O_2 : $ON = -1$
H in compounds	+1	H ₂ O, HF	Hydride MH: $ON = -1$
Cl, Br, I in compounds	-1	HCl, CH₃Cl	ON variable if O and F are present.

The sum of all the ON of the atoms present in a compound = 0.

The sum of all the ON of the atoms in an ion = charge of the ion.

ON = +4 +
$$3 \times (ON = -2) = -2$$

CO₃ charge of the ion

Exercises

Find the oxidation number of the underlined atom in each of the following compounds:

a. <u>C</u>O

f. <u>Ni</u>(OH)₂

k. \underline{CIO}_2^-

b. Li₃N

g. H<u>Cl</u>O₄

I. UO_2^{2+}

c. NaH

h. <u>N</u>H₄⁺

m. $[\underline{Fe}(CN)_6]^{3-}$ (see hint)

d. <u>N</u>₂O₄

I. <u>Si</u>F₂O

n. $(NH_4)_2SO_3$

e. <u>N</u>O₂

j. <u>Ir</u>O₄⁺

o. <u>Fe</u>₃O₄

Hint: $[\underline{Fe}(CN)_6]^{3-}$ None of these atoms in this ion are listed in the oxidation number determination table. However, the "CN" group is the cyanide ion "CN-", with a charge of -1.

 \underline{Fe}_3O_4 A fractional oxidation number is possible since this compound contains both Fe^{2+} and Fe^{3+} ions but in different proportions.

For each of the following reaction (half-reaction), use the change of the oxidation number to indicate if the reaction is a reduction or an oxidation.

p.
$$H_2 \rightarrow 2H^+$$

$$q. V^{5+} \rightarrow V^{3+}$$

r.
$$SF_6 \rightarrow SF_3$$

s.
$$NO_3^- \rightarrow NO_2$$

t.
$$S_2O_3^{2-} \rightarrow SO_4^{2-}$$

Answers:

a.
$$C = +2$$

f.
$$Ni = +2$$

k.
$$Cl = +3$$

b.
$$N = -3$$

g.
$$CI = +7$$

I.
$$U = +6$$

c.
$$H = -1$$

h.
$$N = -3$$

m.
$$Fe = +3$$

d.
$$N = +4$$

I.
$$Si = +4$$

n.
$$S = +4$$

e.
$$N = +4$$

j.
$$Ir = +9$$

o. Fe =
$$+8/3$$
 or $+2.\overline{6}$

p. oxidation: ON(H) $0 \rightarrow +1$

q. reduction: $ON(V) +5 \rightarrow +3$

r. reduction: $ON(S) +6 \rightarrow +3$, ON(F) unchanged.

s. reduction: $ON(N) +5 \rightarrow +4$, ON(O) unchanged.

t. oxidation: $ON(S) +2 \rightarrow +6$, ON(O) unchanged.

In a redox reaction, the oxidation number of the atoms changes.

Any chemical reaction involving an **element** (e.g. H₂, Fe) is a redox reaction:

$$Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$$

 $C(s) + O_2(g) \longrightarrow CO_2(g)$ no metal, no charges, still it is a redox reaction.

All **combustion** reactions are redox reactions (since the element O_2 is involved).

$$CH_4 + 2O_2 \longrightarrow 2H_2O + CO_2$$

The ON of the carbon changes from (-4) in CH₄ to (+4) in CO₂.

Therefore the carbon is oxidized and the oxygen is reduced.

The following reactions are **not oxidation–reduction** reactions since there is **no change of the ON** anywhere.

Precipitation:

$$Ag^{+}(aq) + Cl^{-}(aq) \longrightarrow AgCl(s)$$

Acid base:

$$Ba(OH)_2(aq) + 2HBr(aq) \longrightarrow 2H_2O(I) + BaBr_2(aq)$$

However, a precipitation reaction can also involve the presence of a redox reactions

$$2CuCl_2(aq) + 4I^{-}(aq) \longrightarrow 2CuI(s) + I_2(aq) + 4Cl^{-}(aq)$$

Type of chemical reaction - Exercise

For each of the following, identify the type of chemical reactions

 \mathbf{P} = precipitation, \mathbf{N} = Neutralization (acid-base), \mathbf{RedOx} = Reduction-Oxidation

		Туре
a.	$Ba(OH)_2(aq) + 2HCIO_3(aq) \longrightarrow Ba(CIO_3)_2(aq) + H_2O(\ell)$	
b.	$SiCl_4(aq) + 2Mg(s) \longrightarrow 2MgCl_2(aq) + Si(s)$	
c.	$CaCl_2(aq) + Na_2SO_4(aq) \longrightarrow NaCl(aq) + CaSO_4(s)$	
d.	$CH_4(g) + H_2O(\ell) \longrightarrow CO(g) + 3H_2(g)$	
e.	$CO_3^{2-}(aq) + 2HI(aq) \longrightarrow CO_2(g) + H_2O(\ell) + 2I^-(aq)$	
f.	AgCH ₃ COO(aq) + NH ₄ Br(aq) AgBr(s) + NH ₄ CH ₃ COO(aq)	
g.	$2PbS(s) + 3O_2(g) \longrightarrow 2PbO(s) + 2SO_2(g)$	
h.	$HCI(aq) + NH3(g) \longrightarrow NH4CI(aq)$	
i.	$Ca(OH)_2(aq) + H_2SO_4(aq) \longrightarrow CaSO_4(s) + 2H_2O(\ell)$	
j.	$CuCl_2(aq) + CrCl_2(aq) \longrightarrow CuCl(s) + CrCl_3(aq)$	

Answers and explanations

- a. (N) OH⁻ from Ba(OH)₂ and H⁺ from HClO₃ react together to form a salt and water
- b. (RedOx) solid metal present as a reactant or a product = Redox. Here Mg and Si (metalloid)
- c. (P) without any change of the $O.N^*$, an insoluble product is formed, $CaSO_4(s)$ solutions.
- d. (RedOx) change of the oxidation number of the carbon from CH_4 (-4) to CO_2 (+4).
- e. (N) CO_3^{2-} is a base and HI is an acid. H_2CO_3 is formed but unstable and gives $CO_2(g) + H_2O(\ell)$.
- f. (P) an insoluble product is formed, AgBr(s), from aqueous solutions.
- g. (RedOx) change of the oxidation number of the sulfur from -2 to +2 and the oxygen from 0 to -2.
- h. (N) no change in oxidation state an no precipitate. $NH_3 = base$, HCl = acid.
- i. (N and P) acid-base reaction AND formation of an insoluble compound in aqueous solution.
- j. (Redox and P) Cu and Cr are both changing their oxidation state AND CuCl(s): insoluble is formed.

Note* oxidation number (O.N.) and oxidation state are similar concepts. However, oxidation state is mainly for ionic compounds when an actual charge is present on an atom. For a covalent compound, the term oxidation number is more appropriate.