pH electrode

	substance	рН
	Liquid drain	14.3
	NaOH, 0.1 M	12.9
	Household bleach	12.45
	Household ammonia	11.75
Basic	Lime water	10.45
[H ⁺] < [OH ⁻]	Milk of magnesia	9.8
	Baking soda	8.25
	Egg white	7.6
	Human blood	7.43 – 7.45
	tears	7.15
neutral	Distilled water at 25 °C	7.00
	Milk	6.6
	Saliva	6.3
	Rain	5.7
	Black coffee	4.8
Acidic	banana	4.55
[H ⁺] > [OH ⁻]	tomatoes	4.05
	Cola, vinegar	2.8
	Lemon juice	2.1
	Gastric juice (stomach)	1.2
	HCI 4 M	-0.27

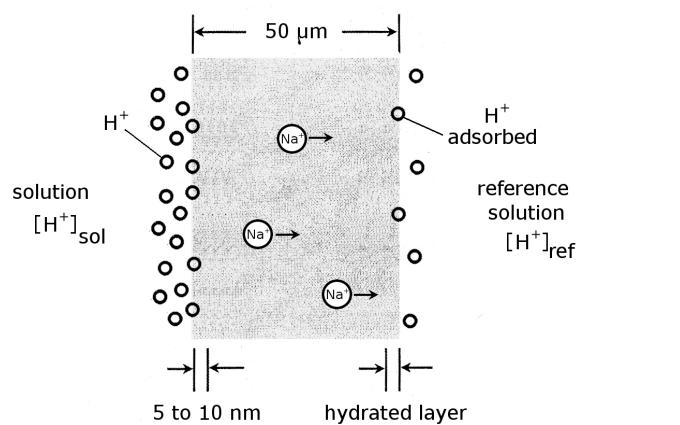
1906 H. Cremer:

Interaction between H+(aq) and glass

notice a difference of potential between each side of the glass

1909 S.P.L. Sorensen:

Concept of pH -> pH = -log[H+]


1909 F. Haber and Z. Klemensiewicz:

Creation of the glass electrode to measure the pH

1934 G. Joseph and A. Beckman:

Vacuum tube electronic amplifier = First commercial Acidimeter.

Principle

$$\Delta E = 0.05916 \text{ V log} \frac{(a_{\text{sample}})}{(a_{\text{reference}})}$$
 at 25 °C

Glass for pH electrodes

Composition %mass			use	
Na ₂ O	CaO	Al ₂ O ₃	Li ₂ O	
20	10	-	-	Silicate glass
22	6	<1	-	1 <ph<9 015="" corning="" glass<="" td=""></ph<9>
27	-	5	-	K ⁺
-	-	25	15	Li ⁺
11	-	18	-	Na ⁺
28.8	-	19.1	-	Ag ⁺
	Na ₂ O 20 22 27 - 11	Na ₂ O CaO 20 10 22 6 27 11 -	Na ₂ O CaO Al ₂ O ₃ 20 10 - 22 6 <1 27 - 5 25 11 - 18	Na ₂ O CaO Al ₂ O ₃ Li ₂ O 20 10 22 6 <1 - 27 - 5 25 15 11 - 18 -

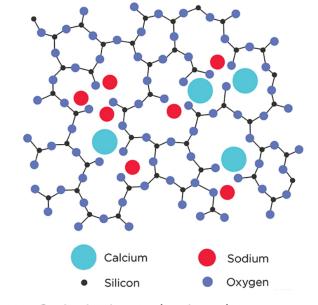


Figure 2. An ionic conductive glass structure.

Source: www.koppglass.com

Figure 1. Type of soda glasses for potentiometric analysis.

The glass of a pH electrode (soda glass or borosilicate SiO_2 , B_2O_3) is permeable to H^+ and Na^+ therefore, sensitive to both ions. This combination of H^+ adsorption and Na^+ diffusion-migration is what is actually measured.

The results is a potential which corresponds to the concentration of H⁺ in the solution-electrode surface at equilibrium.

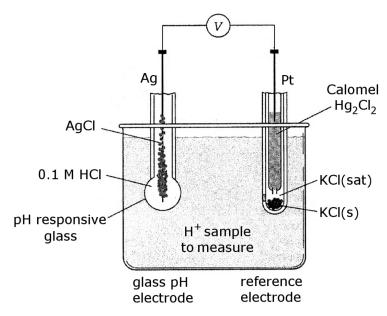
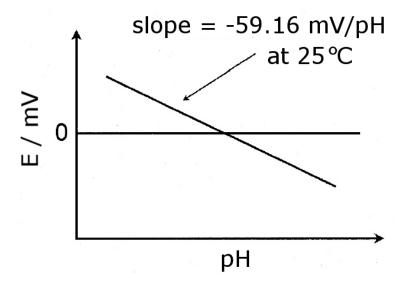


Figure 4. Two electrodes pH measurement with a glass electrode and a calomel reference electrode.


General equation:
$$E_i = \text{constant} + \frac{0.05916 V}{z_i} \log(a_i)$$
 at 25 °C

 $\mathbf{a_i}$ and $\mathbf{z_i}$ are the **activity** (concentration) and **charge of the ion**, respectively. **constant**: any fixed potential related to the reference system, or junction potential. For a <u>cation</u>, the <u>potential</u> of the system <u>increases</u> with the <u>concentration</u>.

General equations for pH measurement at 25 °C

$$pH_{sample} = pH_{ref} + \frac{E_{ref} - E_{sample}}{0.05916 \text{ V}}$$

$$E = \text{offset} - 0.05916 \text{ V} \times \text{pH}$$

The potential at the pH electrode decreases as the pH increases (Increase in pH = a_{H+} decreases)

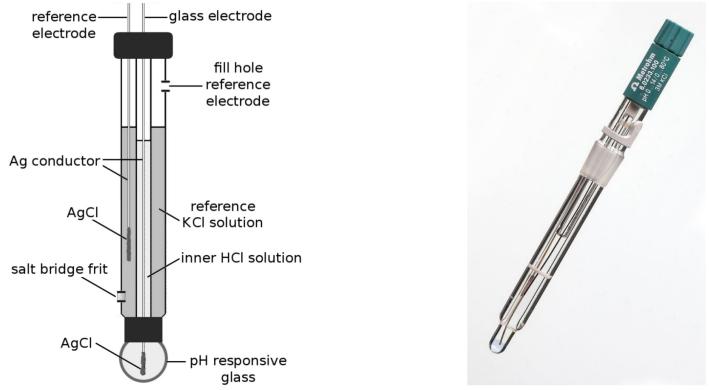


Figure 5. Anatomy of a combined pH glass electrode Figure 6. Commercial combined pH glass electrode Source: www.metrohm.com

Knowing that the resistance of the glass electrode membrane is between 10 M Ω to 100M Ω , a 2 electrodes circuit is highly sensitive to any electric activity from the surrounding.

The standard pH electrode is often a combination of two electrodes together (glass + reference electrode) in a single combined electrochemical cell.

Sample calculation

When immersed in a buffer solution pH = 4.00 at 25 °C, a glass pH electrode has a potential of 467 mV (relative to a calomel reference electrode)

This same pH electrode has a potential of 395 mV when it is immerse into an unknown solution which is less acidic (known from a pH paper).

Calculate the pH of this unknown solution assuming that the electrode follows a Nernstian behavior.

At 25 °C:
$$pH=pH(ref)+\frac{E_{ref}-E_{sample}}{0.05916 V}$$
 (Nernstian)

Answer

$$pH=4.00+\frac{0.467 \text{ V}-0.395 \text{ V}}{0.05916 \text{ V}}$$
 => $pH=5.22$

Note: the indication "less acidic" takes into account that it is impossible to know the polarity of the connections (electrodes) from a single measurement. This information however will be known with the use of two standard solutions.

Advantages:

- 10⁻⁹ sensitivity
- The response is logarithmic = wide dynamic range
- Can work in turbid or colored solution
- Response is fairly rapid (<1 min)
- Sample is not destroyed

Drawback:

- Measure the activity rather then the concentration
- Temperature dependent (RT/F)
- frequent calibration is required
- possible interferences (other ions)

Accuracy No better than +/- 0.02 pH

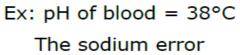
It is possible to discriminate between the pH of two similar solutions with +/- 0.004 pH

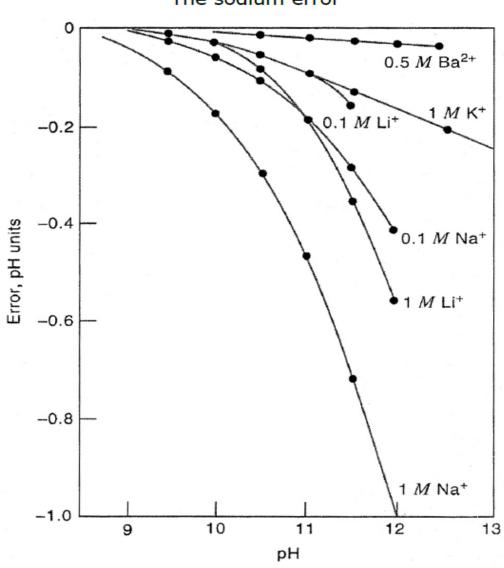
causes:

Residual liquid-junction potential, degradation, ion adsorption, quality standard buffers

Lifetime of the electrode

The lifetime of a pH electrode vary from a few weeks to several years. It depends of the utilization:


High temperature measurement


Very basic medium

Bad maintenance (dry-out)

Hydrolysis of the glass and degradation

Limitations: Interferences

Basic precautions

ONLY a pH meter can be used to measure the potential of a pH electrode.

Never touch the glass of a pH electrode

Take your time when you are reading the pH.

The pH reading is never stable.

The temperature should always be recorded and kept constant.

Never store a pH electrode "dry" or in distilled water.

Store the electrode with its protective cap, vertically and in a box.