In a covalent bond, the electrons (always 2 in number) are not shared equally. This depends on the difference in electronegativity between the two atoms forming the bond. Oxidation numbers refer to the number of charges an atom in a molecule would have if all the bonds were broken.

Example:

 $H-O-H \longrightarrow H^+ O^{2-} H^+$

- It is a way to keep track of the electrons in an oxidation-reduction reaction (redox).
- The term "oxidation state" is mostly used for ionic compounds where the species have a real charge.
- A compound (molecule or ion) is said to be **oxidized** if its **oxidation number increases** in a reaction.
- On the other hand, if a compound is **reduced**, its **oxidation number decreases** in a reaction.

(+3) (+2) ON decreases $Fe^{3+} + e^- \longrightarrow Fe^{2+}$ reduction

species	Oxidation number	example	exception
pure elements	0	O ₂ , Li, Cu, F ₂	
single ions	valence	$Fe^{3+} = +3$, $S^{2-} = -2$	
F in compounds	-1	HF, SF ₆	
O in compounds	-2	H2O, CO, NO2	peroxide H ₂ O ₂ : ON = -1
H in compounds	+1	H ₂ O, HF	Hydride MH: ON = -1
Cl, Br, I in compounds	-1	HCI, CH ₃ Cl	ON variable if O and F are present.

The sum of all the ON of the atoms present in a compound = 0.

The sum of all the ON of the atoms in an ion = charge of the ion.

Find the oxidation number of the underlined atom in each of the following compounds:

a.	<u>C</u> O	f.	<u>Ni</u> (OH) ₂	k.	<u>CI</u> O ₂ ⁻
b.	Li ₃ <u>N</u>	g.	H <u>Cl</u> O ₄	١.	<u>U</u> O ₂ ²⁺
c.	<u>NaH</u>	h.	$\underline{N}H_4^+$	m.	[<u>Fe</u> (CN) ₆] ³⁻ (see hint)
d.	\underline{N}_2O_4	I.	<u>Si</u> F ₂ O	n.	(NH ₄) ₂ <u>S</u> O ₃
e.	<u>N</u> O ₂	j.	<u>Ir</u> O ₄ ⁺	о.	<u>Fe</u> ₃ O ₄

Hint: $[\underline{Fe}(CN)_6]^{3-}$ None of these atoms in this ion are listed in the oxidation number determination table. However, the "CN" group is the cyanide ion "CN^{-"}, with a charge of -1.

 $\underline{Fe}_{3}O_{4}$ A fractional oxidation number is possible since this compound contains both Fe^{2+} and Fe^{3+} ions but in different proportions.

For each of the following reaction (half-reaction), use the change of the oxidation number to indicate if the reaction is a reduction or an oxidation.

- p. $H_2 \rightarrow 2H^+$
- q. $V^{5+} \rightarrow V^{3+}$
- r. $SF_6 \rightarrow SF_3$
- s. $NO_3^- \rightarrow NO_2$
- t. $S_2 O_3^{2-} \rightarrow S O_4^{2-}$

Answers:

a.	C = +2	f.	Ni = +2	k.	Cl = +3
b.	N = -3	g.	Cl = +7	١.	U = +6
c.	H = -1	h.	N = -3	m.	Fe = +3
d.	N = +4	I.	Si = +4	n.	S = +4
e.	N = +4	j.	Ir = +9	о.	Fe = $+8/3$ or $+2.\overline{6}$

- p. oxidation: ON(H) $0 \rightarrow +1$
- q. reduction: $ON(V) + 5 \rightarrow +3$
- r. reduction: $ON(S) + 6 \rightarrow +3$, ON(F) unchanged.
- s. reduction: $ON(N) + 5 \rightarrow +4$, ON(O) unchanged.
- t. oxidation: $ON(S) + 2 \rightarrow +6$, ON(O) unchanged.