Balancing an electrochemical reaction in acidic aqueous solution is performed in the presence of $H_2O(l)$ and $H^+(aq)$. In this case, any of these two species can be added if necessary to balance the reaction.

Steps for balancing a redox reaction (in an acidic solution)

- 1. Separate the reactions in two half-reactions that will both be balanced individually.
- 2. Balance the elements other than $^{\rm ``O''}$ and $^{\rm ``H''}$
- 3. Balance "O" by adding $H_2O(l)$
- 4. Balance "H" by adding H⁺(aq)
- 5. Balance the charges by adding the appropriate number of electrons (e⁻)
- 6. Make sure that the number of electrons is the same in both half reactions
- 7. Add the two half reactions together and cancel-out the electrons

Example: Balance the following reaction using the half reaction method

 $Fe^{3+} + Mn_2O_3 \longrightarrow MnO_2 + Fe^{2+}$

Step 1	$Mn_2O_3 \longrightarrow MnO_2$	$Fe^{3+} \longrightarrow Fe^{2+}$
Step 2	$Mn_2O_3 \longrightarrow 2MnO_2$	
Step 3	$H_2O + Mn_2O_3 \longrightarrow 2MnO_2$	
Step 4	$H_2O + Mn_2O_3 \longrightarrow 2MnO_2 + 2H^+$	
Step 5	$H_2O + Mn_2O_3 \longrightarrow 2MnO_2 + 2H^+ + 2e^-$	e^- + Fe ³⁺ \longrightarrow Fe ²⁺
Step 6	$H_2O + Mn_2O_3 \longrightarrow 2MnO_2 + 2H^+ + 2e^-$	2e⁻ + 2 Fe ³⁺ → 2 Fe ²⁺
Step 7	$2e^{-} + 2Fe^{3+} + H_2O + Mn_2O_3 \longrightarrow 2MnO_2 + 2Fe^{2+} + 2H^+ + 2e^-$	

$$2Fe^{3+} + H_2O + Mn_2O_3 \longrightarrow 2MnO_2 + 2Fe^{2+} + 2H^+$$

IMPORTANT

Electrons are negative particles that carry electrical charge. Since it is an actual physical entity, it cannot be "mathematically" subtracted in a chemical reaction.

$$X + e^{-} \longrightarrow X^{-}$$
 YES
 $M \longrightarrow M^{+} + e^{-}$ YES
 $M - e^{-} \longrightarrow M^{+}$ NO, NEVER!

Balance-redox

Exercises

- Balance each of the the following half-reactions in acidic aqueous solution. Tell whether it is a reduction or an oxidation reaction.
 - a. $SiO_2 \longrightarrow SiO_4$ b. $CO_2 \longrightarrow CO$ c. $Cr^{3+} \longrightarrow Cr_2O7^{2-}$ d. $HN_3 \longrightarrow H_3N$ e. $HNO_2 \longrightarrow NO_3^{-1}$
- Balance the following redox reactions in acidic (H⁺) aqueous solution. Identify the reducing agent.
 - a. $Cl^- + Sn + NO_3^- \longrightarrow SnCl_6^{2-} + NO_2$ b. $Fe^{2+} + NO_2 \longrightarrow NH_3 + Fe^{3+}$ c. $MnO_4^- + Sn^{2+} \longrightarrow Sn^{4+} + Mn^{2+}$

Answer

1. a.	$2H_2O + SiO_2 \longrightarrow SiO_4 + 4H^+ + 4e^-$	(oxidation)
b.	$2e^- + 2H^+ + CO_2 \longrightarrow CO + H_2O$	(reduction)
c.	$7H_2O + 2Cr^{3+} \longrightarrow Cr_2O_7^{2-} + 14H^+ + 6e^-$	(oxidation)
d.	$8e^- + 8H^+ + HN_3 \longrightarrow 3H_3N$	(reduction)
e.	$H_2O + HNO_2 \longrightarrow NO_3^- + 3H^+ + 2e^-$	(oxidation)

2. a.
$$8H^+ + 6CI^- + Sn + 4NO_3^- \longrightarrow SnCl_6^{2-} + 4NO_2 + 4H_2O$$
 red. agent: Sn
b. $7Fe^{2+} + NO_2 + 7H^+ \longrightarrow NH_3 + 7Fe^{3+} + 2H_2O$ red. agent: Fe^{2+}
c. $2MnO_4^- + 5Sn^{2+} + 16H^+ \longrightarrow 5Sn^{4+} + 2Mn^{2+} + 8H_2O$ red. agent: Sn^{2+}