DAWSON COLLEGE

DEPARTMENT OF CHEMISTRY & CHEMICAL TECHNOLOGY

FINAL EXAMINATION CHEMISTRY 202-NYB-05 May 22, 2009 9:30 - 12:30

Print yo	Print your Name:		MARK DISTRIBUTION		
Student	t Number:			1.	/8
				2.	/ 5
INSTR	UCTORS: Pleas	se circle the name o	of your instructor:	3.	/6
	J. Ali	I. Dionne	M. Haniff	4.	/6
	D. Baril	M. Di Stefano	S. Makinen	_	
	O. Behar	N. Duxin	S. Mutic	5.	/ 8
				6.	/7
INSTR	<u>UCTIONS</u> :			7.	/ 6
This ex	am set consists of 15	5 questions. Please	ensure that your copy of this	7.	7 0
examina	ation is complete.			8.	/7
Answer	all questions in the	space provided.		9.	/7
1. Calc	culators may not be sh	nared. Programmabl	e calculators are not permitted.	9.	7 7
2. No	books or extra paper a	are permitted.		10.	/ 5
		•	w the method used to solve all ss your answers to the correct	11.	/ 8

4	Your attention is drawn to the College policy on cheating.	
	I out attention is drawn to the Conege pone, on eneuting.	

number of significant figures.

- 5. A Periodic Table is provided. You may detach the Periodic Table.
- 6. If a mathematical equation is used to solve a problem, the equation should be clearly written.
- 7. Write your answer in the appropriate box when required

USEFUL DATA:

Avogadro's Number $N_A = 6.022 \times 10^{23} mot^{-1}$ $R = 0.08206 L \cdot atm \cdot K^{-1} \cdot mol^{-1}$ Gas Constant $= 8.314 L\cdot kPa\cdot K^{-1}\cdot mol^{-1}$ $= 8.314 \ J \cdot K^{-1} \cdot mol^{-1}$ $1 \ atm = 101.3 \ kPa = 760 \ mmHg = 760 \ torr$ $1 J = 1 kg \cdot m^2 \cdot s^{-2}$ $101.3 J = 1 L \cdot atm$

/ 8 / 5 / 6 / 6 / 8

8.	/7
9	/7

11.	/ 8

12

Figures

12.	, 0
13	17
13.	1 1

/ 6

15.	/ 6
Significant	/ 2

TOTAL	/100

The electrolyte of an automobile lead storage battery is a 3.75 M sulfuric acid ($\rm H_2SO_4$) solution in water. It
has a density of 1.23 g/mL. Calculate for the sulfuric acid:

a. the mass percent

2 marks

b. the molality

2 marks

c. the mole fraction

2 marks

d. What volume of 3.75 M sulfuric acid must be used to prepare 1.5 L of a 0.10 M $\rm H_2SO_4(aq)$ solution?

2 marks

Answers

a. mass percent:	b. molality:	c. mole fraction:	d. volume:	
------------------	--------------	-------------------	------------	--

Knowing that a human eye has an osmotic pressure of 7.97 atm at 37.0° C, an eye-drop solution with the same osmotic pressure and temperature is prepared by adding 0.242 g of NaCl in 25.0 mL water. Calculate the van't Hoff factor for NaCl in this solution. Assume the density of the solution to be 1.00 g/mL.

5 marks

Answer

van't Hoff factor :

Question 3

At a high altitude camp in the Rockies, water boils at 95.4°C instead of 100.0°C. A visitor has requested a soft-boiled egg (usually boiled for 3.00 minutes at 100.0°C). The activation energy for the reaction in question is 453 kJ/mol.

6 marks

egg protein (I) → egg protein (s)

How long will it take to cook his egg at 95.4°C?

Answer

time :

The following data were obtained for the reaction:

$$2ClO_2(aq) + 2OH (aq) \longrightarrow ClO_3 (aq) + ClO_2 (aq) + H_2O(l)$$

Where Rate =
$$-\frac{\Delta[CIO_2]}{2\Delta t}$$

Experiment no.	$[ClO_2]_{\circ}$	[OH] _o	Initial rate
	(mol·L ⁻¹)	(mol·L ⁻¹)	(mol·L ⁻¹ ·s ⁻¹)
1	0.0500	0.100	5.75x10 ⁻²
2	0.100	0.100	2.30x10 ⁻¹
3	0.200	0.0250	2.30x10 ⁻¹

3 marks

b. Calculate the value of the rate constant (with units).

2 marks

c. What is the overall order of this reaction?

1 mark

Α	n	c	14/	ے	rc
А	"	S	vv	ᆫ	ıs

	a. rate law :	b. rate constant :	c. overall order :	
- 8				:

Consider the following chemical reaction	at 10° C with [NOBr] _o = 0.080 M:
--	---

2NOBr(g) —	>	2NO(g)	+	$Br_2(g)$

Rate =
$$0.80 \text{ M}^{-1}\text{s}^{-1}[\text{NOBr}]^2$$

a.	Calculate the	time	required	for 85%	of the	initial	NOBr	to	react
----	---------------	------	----------	---------	--------	---------	------	----	-------

3 marks

Answer	
time :	

b. What is the half-life of this reaction?

2 marks

Ar	swer	
Ł	. half-life :	

c. Indicate whether the following statements are true of false for the chemical reaction described above.

3 marks

		True	False
i.	The rate of the reaction doubles if the concentration of $NOBr$ is doubled		
ii.	The rate of the reaction decreases as time goes on		
iii.	If $[\mathrm{NOBr}]_{o}$ = 0.080 mol/L, then after 100 s all the reactant is consumed		
i۷.	The half-life of the reaction is 5.0 s when $[NOBr]_o$ = 0.040 mol/L		
٧.	The plot of [NOBr] vs. time is a straight line		
۷İ.	Changing the temperature will affect the order of the reaction		

Consider the following reaction

$$H_2S(g) + I_2(s) \longrightarrow 2HI(g) + S(s)$$
 $K_p = 1.34x10^{-5} \text{ at } 60^{\circ}\text{C}$

A 5.00 L reactor contains the following initial mixture at 60°C

2.00 g solid iodine (I_2) 1.07 g sulfur powder 10.1 kPa of hydrogen sulfide (H_2S)

a. What will be the pressure of HI at equilibrium?

3 marks

b. What is the K value for this equilibrium at 60°C?

2 marks

c. What will be the value of K_p for the following reaction at the same temperature?

2 marks

$$4HI(g) + 2S(s)$$
 \longrightarrow $2H_2S(g) + 2I_2(s)$

Answers

a. HI pressure : b. K : c. K_p :

a. Indicate whether the following statements are true of fa	alse				3 marks
i. The solubility of a gas in water decreases with incre	easing tem	perature	Tru	False	•
ii. The presence of a non-volatile solute in a solvent the solution	lowers the	e vapor press	ure of		
iii. Henry's law states that the amount of a gas disso proportional to the pressure of the gas above the		solution is d	rectly		
iv. A liquid-liquid solution that obeys Raoult's law is cal	lled an id	eal solution"			
v. Colligative properties are based on the number of p the "size" of the particle.	articles in	solution, wha	atever		
vi. The addition of an ionic compound to any solver depression.	nt will cau	use a boiling	point		
b. The gas Arsine, AsH_3 decomposes as follows: $2AsH_3(g) \begin{tabular}{l} 2As(s) + 3H_2 \\ \hline \\ For each of the following cases, in which direction will the second contact of the products of the product of the products of the products of the products of the product of the pro$	the positio			nifted if:	3 marks
i. As(s) is added	left	no change	right		
ii. the pressure is increased by adding argon gas					
iii. the volume of the reaction container is decreased					
iv. the temperature is decreased					
v. hydrogen is removed					
vi.a catalyst is added					

\sim	uestion	_
()	HACHAN	~

a. pH:	b. K _a :	c. percent dissociation :	
Answers			
c. What will be the percent disso	ociation if the concentration increases	s to 4.5 M?	3 marks
b. What is the K_a of this acid?			2 marks
a. What is the pH of this solution	?		2 marks
	ous acid HClO_2 in water is 8.0% whe	en its concentration is 1.58 M.	

		- 9 -
Q	uestion 9	
a.	Order the following from the strongest to the weakest base	1.5 marks
	i. H ₂ O	
	ii. CH ₃ NH ₂	
	iii. ClO ₄	
	strongest base weakest base	
b.	Arrange the following aqueous solutions in order from most acidic to most basic.	1.5 marks
	i. 0.1M KF	
	ii. 0.1M KNO ₃	
	iii. 0.1M NH ₄ Cl	
	most acidic most basic	
C.	What will be the pH of an aqueous solution made up of 0.514 g potassium cyanide KCN in 125 mL water K_a HCN = $6.2x10^{-10}$.	r. 4 marks

Answer

pH:

Question 10

Calculate the mass of KNO_2 that must be added to 500. mL of 0.20 M nitrous acid $(HNO_2, K_a = 4.6 \times 10^{-4})$ to get a solution of pH = 4.00. Assume no change of the volume of the solution with the addition of KNO_2 .

5 marks

Mass of $K\!NO_2$:

A 20.0 mL sample of 0.10 M formic acid (HCOOH) was titrated with 5.0x10 ⁻² M	$M Ba(OH)_2$.
K_a for HCOOH is 1.8x10 ⁻⁴ .	_

a. Calculate the pH of the solution upon the addition of 15.0 mL of $\mathrm{Ba(OH)}_2$ to the sample.

3 marks

Answer		
а. pH :		

\cap	estion	11	(cor	١ +،
しいいに	-511011		TO COL	11.)

b.	What volume of Ba(OH) ₂	is needed to reach	the equivalence point?

2 marks

c. Calculate the pH of the solution at the equivalence point.

3 marks

Answers

Question 12

Solid NaI is slowly added to a solution that contains both $Pb(NO_3)_2$ (0.100 M) and $AgNO_3$ (2.0x10⁻⁴ M).

6 marks

- a. Which begins to precipitate first: the lead iodide or the silver iodide? Show your work
- b. The concentration of the first cation species to precipitate, either the lead or the silver, decreases as the precipitate forms. What is the concentration in solution of the first species when the second begins to precipitate? Assume no change of volume of the solution with the addition of NaI.

Note: K_{sp} PbI₂ = 1.4x10⁻⁸ , K_{sp} AgI = 1.5x10⁻¹⁶

a.: b.:

3 marks

а	Predict the	sian of	1.S of the s	vstem for ea	och of the	following	nrocesses
a.	FIEUICI IIIE	Sign or		ysteili ioi ee		IOHOWING	processes

ii. Sugar that crystallized out from a supersaturated sugar solution

15-0	∆ S > 0	
∆S < 0	∆3 ~ U	

iv. A-B(g) + C-D(s)
$$\longrightarrow$$
 A-B-C(g) + D(s)

iii. Iron rusts (formation of Fe_2O_3 from pure Fe and O_2)

v.
$$N_2O_4(g) \longrightarrow 2NO_2(g)$$

A liquid that boils

Answer

b. T_b :

vi. NaCl(s)
$$\sim$$
 Na⁺(aq) + Cl⁻(aq) ΔH_{sol} = +4.0 kJ/mol

b.	For mercury (Hg) , the enthalpy of vaporization is 58.51 kJ/mol and the entropy of vaporization is
	92.92 J/K.mol. What is the normal boiling point of mercury?

4 marks

Consider the following reaction

$$N_2O_4(g) \longrightarrow 2NO_2(g)$$

Will the reaction be spontaneous at each of the following temperatures? Show your work. (assume that ΔH° and ΔS° do not change very much within the given temperature range)

6 marks

- a. 25.0°C
- b. 60.0°C

Answers

|--|

Useful data	$N_2O_4(g)$	NO ₂ (g)
ΔH^{o}_{f} in kJ/mol	+9.67	+33.8
S° in J/(mol⋅K)	+304	+240.5

$\overline{}$			-	_
) i	ıesti	n	- 1	ヵ

Complete the "experiment 2" laboratory data sheet and find the molar mass of the unknown no 3.

6 marks

The solid unknown added is a non-ionic compound, completely soluble in cyclohexane.

Experiment 2

COLLIGATIVE PROPERTIES DATA SHEET

k_f	cyclohexane =	20.2°C.kg.mol ⁻¹	T_f cyclohexane = 6.55°C
-------	---------------	-----------------------------	----------------------------

Data for the Unknown Solute/Cyclohexane Solution

Unknown Number:3		
Mass of empty test tube, stopper, beaker	g _	185.2235
Mass of test tube, stopper, beaker, & cyclohexane	g	204.5736
Mass of test tube, stopper, beaker, & unknown solute/cyclohexane solution	g	204.9847
Mass of cyclohexane	g	
Mass of unknown solute	g _	
Freezing Temperature of unknown solute/cyclohexane solution	°C _	4.27
Molar mass of unknown solute	g·mol ^{₋1}	

Sample calculation.	