DAWSON COLLEGE

DEPARTMENT OF CHEMISTRY & CHEMICAL TECHNOLOGY

FINAL EXAMINATION CHEMISTRY 202-NYB-05 May 21, 2010 9:30 – 12:30

Pr	int your Name:			N
Stı	udent Number:			1
				2
IN	STRUCTORS: P	lease circle the name of your	instructor:	3
	J. Ali	I. Dionne	M. Haniff	4
	D. Baril	M. Di Stefano	S. Holden	
	O. Behar	N. Duxin / Y-S. Uh	S. Mutic	5
				6
IN	STRUCTIONS:			7
	is exam set consists o amination is complete.	f 16 questions. Please ensure	e that your copy of this	8
An	nswer <u>all</u> questions in t	he space provided.		9
1.	Calculators may not b	e shared. Programmable calcu	lators are not permitted.	
2.	No books or extra pap	er are permitted.		_1
3.		l credit, <u>you must show</u> the realculations and express your		1
	number of significant			1
4.	Your attention is draw	n to the College policy on che	eating.	1
5.	A Periodic Table is pr	ovided. (last page).		1

USEFUL DATA:

be clearly written.

Avogadro's Number $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Gas Constant

$$R \begin{cases} = 0.08206 \text{ L} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \\ = 8.314 \text{ L} \cdot \text{kPa} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \\ = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \end{cases}$$

6. If a mathematical equation is used to solve a problem, the equation should

7. Write your answer in the appropriate space when required.

1 atm = 101.3 kPa = 760 mmHg = 760 torr

$$1 J = 1 kg \cdot m^2 \cdot s^{-2}$$

 $101.3 J = 1 L \cdot atm$

MARK DISTRIBUTION

1.	/ 8
2.	/5
3.	/3
4.	/ 6
5.	/ 5
6.	/ 8
7.	/ 6
8.	/6
9.	
10.	
11.	/6
12.	
13.	
14.	/6
15.	
16.	/ 5
TOTAL	/100

Ethanol is the common alcohol with molecular formula C ₂ H ₅ OH. An alcohol-water solution is prepared by
dissolving 10.00 cm ³ of ethanol, with density $d_{\text{ethanol}} = 0.789 \text{ g/cm}^3$, in a sufficient volume of water to
produce 100.00 cm ³ of solution. Density of solution is $d_{soln} = 0.932 \text{ g/cm}^3$.

For a given solution calculate the following for ethanol:

a. the mass percent		(2 marks)
b. the molarity	Ans. Mass%:	(2 marks)
c. the molality	Ans. molarity:	(2 marks)
d. the mole fraction.	Ans. molality:	(2 marks)
	Ans. Mole fraction:	_

Λ.		
w	uestion	-2

Toluene, C_7H_8 is a component of gasoline (octane, C_8H_{18}). It is present in gasoline as an octane booster at concentrations between 3 to 5% by mass (25% in racing cars gasoline).

Consider a solution of octane with 20.% by mass of toluene at 20°C

a. Calculate the total vapor pressure of this solution

(3 marks)

Data: $P^{\circ}_{octane} = 10.5 \text{ mm Hg at } 20^{\circ}\text{C}, T_b = 126^{\circ}\text{C}$

 $P^{\circ}_{toluene}$ 22 mm Hg at 20 °C, $T_b = 111$ °C

ans. total vapor pressure:_____ (1 mark)

b. Calculate the mole ratio of toluene to octane in the vapor phase above the solution

ans. mole ratio: toluene/octane:_____

c. If the actual vapor pressure measured is 15.2 mm Hg, will the boiling point of this solution be **higher** (1 mark) **or lower** than the one expected from Raoult's law? Explain.

A 0.461 g sample of cumene, a non-volatile non-ionic compound, is dissolved in 10.0 g cyclohexane (C_6H_{12}), producing a solution that freezes at -1.25°C. Cyclohexane has a normal freezing point of 6.50°C and a freezing point depression constant of 20.2°C/m. What is the molar mass of cumene?

(3 marks)

Ans. Mol.	mass cumene:	
-----------	--------------	--

Question 4	1
------------	---

Ну	drofluoric acid, (HF) is a weak acid that can be used in the fluoridation of water. An aqueous solution of	
0.	100 M HF has an osmotic pressure of 2.64 atm at 25°C.	
a.	Calculate the van't Hoff factor for HF at this concentration	(2 marks)
	Ans. van't Hoff factor:	
b.	Does it differ from the maximum van't Hoff factor expected for a monoprotic acid? If so, explain why.	(2 mark)
C.	What is the percent ionization of HF at this concentration?	(2 marks)

Ans. % ionization:_____

lodide ion is oxidized in acidic solution to triiodide ion I_3 by hydrogen peroxide.

$$H_2O_2(aq) + 3 I (aq) + 2 H^+(aq) \rightarrow I_3 (aq) + 2H_2O(1)$$
 Rate = $\frac{\Delta[I_3^-]}{\Delta t}$

A series of four experiments was run at different concentrations, and the initial rates of I_3 formation were determined (see table).

	Initial concentration	Initial concentration	Initial concentration	Initial rate
	(mol·L ⁻¹)	(mol·L ⁻¹)	(mol·L ⁻¹)	(mol·L ⁻¹ ·s ⁻¹)
	H_2O_2	I	H^+	
Exp 1	0.010	0.010	0.00050	1.15x10 ⁻⁶
Exp 2	0.020	0.010	0.00050	2.30x10 ⁻⁶
Exp 3	0.010	0.020	0.00050	2.30x10 ⁻⁶
Exp 4	0.010	0.010	0.00100	1.15x10 ⁻⁶

_	From the table above	obtain the reactio	n ordoro with	rooppost to pook	of the following	anagiaa:
a.	From the table above.	, obtain the reactio	n orders with	respect to each	of the following	species.

$$\mathrm{H_{2}O_{2}}, \qquad \mathrm{I} \;\; , \qquad \mathrm{H}^{+}.$$
 (3 marks)

			+
Ans. Reaction order:	H ₂ O ₂ :	I :	H :

b. Find the rate constant with its units.

(2 marks)

_						
The reaction below was	monitored as a	a tunction	of time at	a temr	perature o	(4()() K
THE TEACHER BOILD WAS	moment action		O: ac	ω .cop		

2NOCℓ	$(g) \rightarrow$	2NO(g)	+	$C\ell_2(g)$

A plot of 1/[NOC ℓ] against time yielded a straight line with slope of 6.7x10⁻⁴ L·mol⁻¹·s⁻¹.

a. Write the rate law for the reaction.

(2 marks)

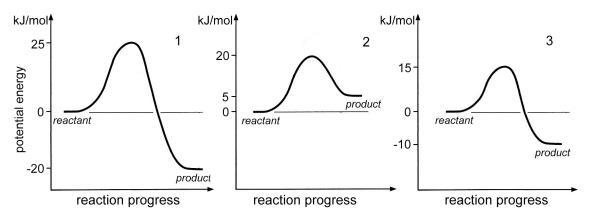
b. What is the half-life for the reaction if the initial concentration of NOC ℓ is 0.20 M?

(2 marks)

Ans. half-life:

c. If the initial concentration of NOC ℓ is 0.35 \emph{M} , what is the concentration of NOC ℓ after 5.0 min?

(2 marks)

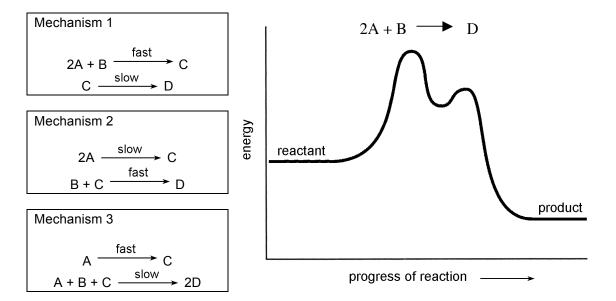

Ans. [NOCℓ] after 5.0 min:

d. If the initial concentration of NOC ℓ is 0.35 M, How long will it take for the concentration to drop to 20% (2 marks) of its original value?

Ans. time after 20% drop:

a. Consider the potential energy profiles for three different chemical reactions.

(2 marks)



Indicate which reaction is the slowest one. Explain your choice

b. Consider the potential energy profiles for a chemical reaction.

(2 marks)

(2 marks)

Circle the proposed mechanism that is consistent with the reaction profile shown and explain your choice.

- c. Beside concentration and pressure, give two parameters you can change that could affect the reaction rate of a chemical reaction:
 - i. _____ ii.

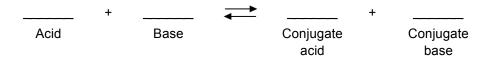
Αt	elevat	ed temperature (997°C) limestone dissocia	ates according	to the equation		
		$CaCO_3(s) \longrightarrow CaO(s)$	+ CO ₂ (g)	Δ <i>H</i> = +42.5 kJ		
a.		0 g ${\rm CaCO_3}$ (100.1 g/mol) is placed in an evnany grams of ${\rm CaCO_3}$ will decompose if th				(2 marks)
b.		volume of the container is expanded to 10 orium?	.0 L at 997°C, v	vhat will be the CO	₂ pressure at	(1 mark)
c.	Calcu	late K_{C} for this reaction at 997°C				(1 mark)
d.	Predic	ct the effect of each of the following change	es will have on	the equilibrium pos	ition.	(2 marks)
		_	ec	quilibrium position s	shift	
		change	to the left	no change	to the right	
	i.	CO ₂ is added				
	ii.	CaCO ₃ is added				
	iii.	Pressure is increased (adding $N_2\mbox{ gas},$ volume unchanged)				
	iv.	The temperature is increased				

Consider the following set of data:

Formula	K _a (at 25°C)
$[Al(H_2O)_6]^{3+}$	1.4×10 ⁻⁵
HNO ₂	4.0×10 ⁻⁴
HF	7.2×10 ⁻⁴

a.	What is the strongest acid in the table?	'(1	1 mark
----	--	-----	--------

b. With the help of the table, arrange the following in order of most basic to least basic:

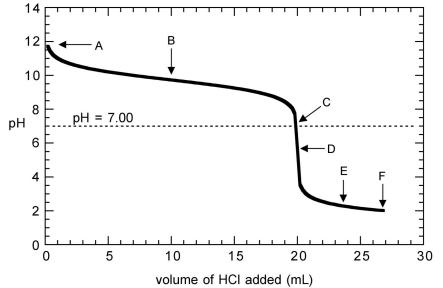

(2 marks)

$$\text{H}_2\text{O}, \quad \text{NO}_2 \ , \ \left[\text{Al}(\text{H}_2\text{O})_5\text{OH}\right]^{2+}$$

c. What is the value of K_b for F at 25°C? (2 marks)

d. Write the chemical reaction represented by the K_b for F in water and place the species involved in (2 marks) the appropriate place

e. At 40° C, $K_{\rm W} = 2.9 \times 10^{-14}$. What is the neutral *pH* of water at this temperature? (2 marks)



a.	A solution of th	e basic oxide CaO is prepared I	by adding water to 0.28 g (CaO to make 0.50 L of	
	solution.	_			
	i. Write the ed	quations for the reactions that or	ccur when CaO is dissolved	d in water	(1 mark)
~					
	ii. Assuming th	hat ion-pairing is non-existent, w	hat is the expected pH of t	this solution?	(2 marks)
					•
				ans. pH:	
_					(0 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
b.	For which of th	e following salts will the solubilit			(2 marks)
			pH sensitive	<i>pH</i> independent	
	i.	KCℓO ₄			
	ii.	$Pb(OH)_2$			
		, , _			
	iii.	AgF			
	iv.	$Ba(NO_3)_2$			
					(0 ()
C.	neutral or basic	e following salts dissolved in wat	er, predict whether the aqu	leous solution will be acidic,	(2 marks)
	neutral of basic	J.	acid ne	eutral basic	
		D1 044			
	i.	RbOH	<u></u>	\sqcup \sqcup	
	ii.	NaIO			
	iii.	NH ₄ OH			
	iv.				
	IV.	LiCℓO ₃			

$ \cap $		eti	in	n	4	4
L.)	Пρ	CT	ın	n	1	1

Qı	uestion 11				
a.	Consider 0.500 L of a b	uffer th	at consists of 1.5	$0 \ M \ \text{KC}\ell\text{O} \ (K_a \ \text{HC}\ell\text{O} = 3.5 \text{x} 10^{-8}) \text{ and } 0.50 \ M \ \text{HC}\ell\text{O}.$	(4 marks)
	What will be the pH of t	his buff	er after the addition	on of 250 mL of 1.0 <i>M</i> HNO ₃ ?	
				ans. pH:	
h	Which of the following	mivture	e would result in a	a buffer solution when 100 mL of each of the two	(2 marks)
υ.	solutions are mixed tog		s would result iii a	a buller solution when 100 mz or each of the two	(2 marks)
		,			
				buffer not a buffer	
	i. 0.1 <i>M</i> KOH	and	0.2 M NH.		
	1. U.I W KUH	anu	0.2 W NH3		
	ii. 0.2 <i>M</i> HCℓ	and	0.2 <i>M</i> NH ₃		
	iii. 0.2 <i>M</i> HNO ₃	and	0.4 <i>M</i> NaNO ₃		
	iv. 0.1 <i>M</i> HNO ₃	and	0.2 <i>M</i> NaF		
	U.1 W 11NO3	anu	U.Z IVI INAI		

Consider the following titration curve of trimethylamine (C_3H_9N) a weak base with 0.100 M HC ℓ at 23°C.

Initial solution: 50.0 mL of C_3H_9N , 4.00x10⁻² \emph{M}

a. Draw on the graph the shape of the titration curve if this base had a smaller K_{b} value.

b. Which letter (A to F) on the graph corresponds to each of the following?

letter _____

The point of half-neutralization

The equivalence point

The point corresponding to the pK_a of $C_3H_9NH^+$

c. When 15.0 mL of 0.100 M HC ℓ is added, the pH of the solution is 9.255. Calculate K_b of trimethylamine.

ans. K_b:__ (1 mark)

(3 marks)

(3 marks)

a.	A saturated aqueous solution of $Mg(OH)_2$ has a pH of 10.08, what is the K_{sp} of $Mg(OH)_2$?	(2 marks)
	ans. K _{sp} :	
b.	The K_{sp} of cobalt(III) hydroxide is 2.5×10^{-43} . Calculate the solubility of $Co(OH)_3$ in water in mol/L	(2 marks)
	ans. solubility (mol/L):	
	uns. solubility (mon2)	
C.	Does a precipitate form when 25 mL of 0.10 M lithium nitrate LiNO ₃ , is mixed with 35 mL of 0.75 M	(3 marks)
	sodium carbonate Na_2CO_3 ? ($K_{sp} Li_2CO_3 = 8.15 \times 10^{-4}$) Show your work .	(
	ans: yes no	

Question 14	
A system is made of a cylinder of gas with a piston. W	When 4.0 kJ of heat is transferred from the /(3 marks,
surroundings to the system, the gas in the piston expands	from 12 L to 27 L and performs work on the
surroundings. If the system gains 201 J of internal energy	gy from this process, against what constant
external pressure, in atmospheres, is the piston working?	
	Ans. pressure (atm):
	, (a)
ي. Bromine is a liquid at room temperature. Calculate the fre	eezing point of bromine if its heat of fusion ja (3 marks,
15.79 kJ⋅mol ⁻¹ and its entropy of fusion is 21.8 J⋅K ⁻¹ ⋅mol ⁻¹	
(1)	
\times	

Ans. T_f bromine: _

a. Circle the substance in each of the following pairs that would have the greater entropy.

(2 marks)

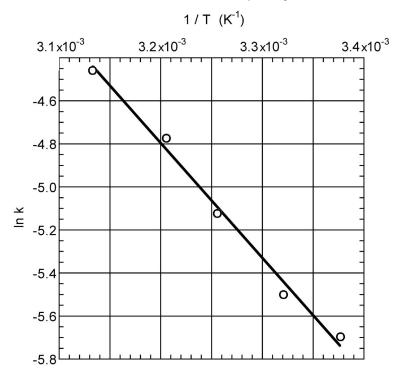
- i. H_2O (£, 1 mol, 75°C, 1 atm) or H_2O (g, 1 mol, 75°C, 1 atm)
- ii. Fe (s, 50.0 g, 5°C , 1 atm) or Fe (s, 0.80 mol, 5°C , 1 atm)
- iii. Br₂ (ℓ , 1 mol, 8°C, 1 atm) or Br₂ (s, 1 mol, -8°C, 1 atm)
- iv. SO_2 (g, 0.312 mol, 32.5°C, 0.110 atm) or SO_2 (g, 0.284 mol, 22.3°C, 15 atm)

b. Methyl isothiocyanate, CH_3 —N=C=S, is a highly irritating pesticide. It can be prepared by reacting carbon disulfide with methylamine. Given the thermodynamic data at 25°C below, calculate the standard molar entropy of methyl isothiocyanate.

(4 marks)

	$CS_2(g)$	+ Ch ₂ NH ₂ (g) -	\rightarrow CH ₃ —N=C=S (g)	+ H ₂ S (g)
ΔG ° (kJ·mol ⁻¹)	67.15	32.09	144.35	-33.56
ΔH ° (kJ·mol ⁻¹)	117.36	-22.98	130.96	-20.63
S° (J·mol ⁻¹ ·K ⁻¹)	237.73	243.30	?	205.69

In the laboratory experiment 4, you want to determine the activation energy of the following reaction:


(5 marks)

$$2I^{-}(aq) + S_2O_8^{2-}(aq) \longrightarrow I_2(aq) + 2S_2O_4^{2-}$$

Where the reaction rate is: Rate = - $[\Delta I^{-}]/2\Delta t$ and the rate law for this reaction is: Rate = $k[I^{-}][S_2O_8^{2^{-}}]$

By recording the reaction rate of several experiments at different temperatures, the following graph based on the linear form of the Arrhenius equation is obtained.

Arrhenius plot for the determination of the activation energy for the reaction of iodide with peroxydisulfate

From this graph, calculate the activation energy (with units) for this reaction.

	1A	Periodic Table of the Elements											8A					
	1																	2
1	Н																	He
	1.008	2A	1									ı	ЗА	4A	5A	6A	7A	4.003
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	О	F	Ne
	6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	Cl	Ar
	22.99	24.31	3B	4B	5B	6B	7B	8B	9B	10B	1B	2B	26.98	28.09	30.97	32.07	35.45	39.95
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	85.47	87.62	88.91	91.22	92.91	95.94	98.00	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	132.9	137.3	138.9	178.5	181.0	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	209.0	210.0	222.0
	87	88	89	104	105	106	107	108	109	110	111	112			Ī			
7	Fr	Ra	Aca	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub			= 1	metallo	oid	
	223.0	226.0	227.0	261.0	262.0	263.0	262.0	265.0	266.0	269.0	272.0	277.0						
					ı													Ī
				58	59	60	61	62	63	64	65	66	67	68	69	70	71	
	*Lan	thanid	es	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
				140	141	144	145	150	152	157	159	163	165	167	169	173	175	
				90	91	92	93	94	95	96	97	98	99	100	101	102	103	
	^a Ac	ctinides	S	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
				232	231	238	237.1	244	243	247	247	251	252	257	258	259	260	