DAWSON COLLEGE

DEPARTMENT OF CHEMISTRY & CHEMICAL TECHNOLOGY

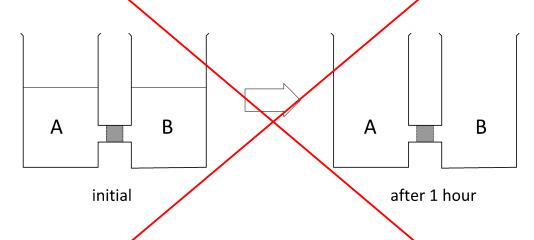
FINAL EXAMINATION CHEMISTRY 202-NYB-05 May 18, 2012 14:00 – 17:00

Pr	int your Name:			MARK D	ISTRIBUT	ΓΙΟΝ
Stı	ıdent Number:					
				1.	/	8
IN	STRUCTORS:	Please circle the name of yo	ur instructor:	2.	/	5
	J. Ali	D. Baril	Y. Brouillette	3.		6
	I. Dionne	M. Di Stefano	M. Haniff	3.	<i>I</i>	U
		S. Mutic	G. Rahil	4.		5
IN	STRUCTIONS:			5.	/	9
	is exam set consist	es of 16 questions. Please ens	ure that your copy of this	6.		6
An	swer <u>all</u> questions	in the space provided.		7.		8
1.	Calculators may no	ot be shared. Programmable ca	lculators are not permitted.			
2.	No books or extra	paper are permitted.		8.	/	3
3.		e method used to solve all our answers to the correct	9.	/	6	
4.	•	lrawn to the College policy on	ahaatina	10.		6
4 .		with constants is provided.	cheating.	11.		6
6.		oblem, the equation should	12.	/	9	
	j			13.	/	6
US	EFUL DATA:					
Av	ogadro's Number	$N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$		14.	/	7
Ga	s Constant	15.		5		
		$= 8.314 \text{ L} \cdot \text{kPa} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$				
		$= 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$		16.	/	4
		60 mmHg = 760 torr		Sig. fig.	/	1
1 J	$= 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-2} = 1 \text{ kg}$	3	, ,			

Total:

/ 100

 $101.3 \text{ J} = 1 \text{ L} \cdot \text{atm}$


a. A 1.00 L concentrated KOH solution contains 655 g KOH. The solution density is 1.456 g/mL. Calculate the molality (*m*) of this solution. (4 marks)

You are asked to prepare an aqueous solution of ethylene glycol (HOCH₂CH₂OH) with a mole traction of 0.095. If you use 545 g of water, what mass of ethylene glycol should you use? (4 marks)

a.	The following plot shows the vapor pressure of various solutions of chloro temperature.	oform and ac	etone at some
	Total vapor pressure of the solution O male fraction of chloroform		
Ind	icate whether the following statements are true or false:		(2.5 marks)
		True	False
i.	The solution exhibits negative deviation from Raoult's law.		
ii.	ΔH for mixing this solution is endothermic.		
iii.	The intermolecular forces between chloroform and acetone are weaker in solution than in either pure chloroform or pure acetone.		
iv.	Pure chloroform has a higher vapor pressure than pure acetone.		
٧.	The solution with a mole fraction of chloroform of 0.6 will have a lower boiling point than either pure chloroform or pure acetone.		
b,	The vapor pressure of a solution containing 53.6 g glycerin ($C_3H_8O_3$ covalent compound) in 133.7 g ethanol (C_2H_5OH , 46.07 g/mol) is 113 t	_	
	vapor pressure of pure ethanol at 40°C. Assume ideal behavior.		(2.5 marks)

answer:

a. A solution called A is prepared by dissolving 56.75 g glucose, C₆H₁₂O₆, (180.15 g/mol, a soluble pon ionic solid) in enough distilled water to make 1.00 L solution at room temperature (25°C). This solution is isotonic with human blood (same osmotic pressure) and placed in part A of the container. A sodium chloride aqueous solution, called B, with an osmotic pressure of 6.0 atm is added to part B. Both parts are separated by a semi permeable membrane (only water molecule can pass). Draw on the container after 1 hour" the level of the two liquids in both sides when the equilibrium will be reached. Assume NaCl is 100% dissociated.

b. A red blood cell is actually a small "container" made up of a semipermeable membrane. What would happen to the volume of the red blood cell if it is submerged in:

(1 mark)

		bigger	no change	smaller
i.	solution A at 10°C (assume red blood cell to be at 25°C)			
ii.	solution B at 25°C			

- c. Consider the following aqueous solutions of salts completely ionized:
 - i. 4 m potassium Iodite, KI
 - ii. 3 m sodium sulfate, Na₂SO₄
 - iii. 3.5 m ammonium phosphate (NH₄)₃PO₄

		ncreasing		

(2 marks)

<	<	
lowest freezing point		highest freezing point

a.	For	the	fol	lowing	reaction,
ч.				0	· caction,

(1 marks)

$$2 \text{HgC}\ell_2(\text{aq}) + C_2O_4^{2-}(\text{aq}) \longrightarrow 2 \text{C}\ell^-(\text{aq}) + 2 \text{CO}_2(\text{g}) + \text{Hg}_2\text{C}\ell_2(\text{s})$$

if the rate of disappearance (or consumption) of $C_2O_4^{2^-}$ is $5.6x10^{-5}$ M/min what is the rate of formation of $C\ell^-$?

answer	:	
		_

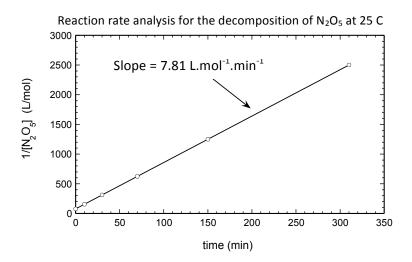
$$2A + 2B \longrightarrow C + D$$

was measured using initial concentrations of A and B. The results are summarized in the table:

Experiment	[A], M	[B], M	Initial rate, M·s ⁻¹
1	0.185	0.133	3.35x10 ⁻⁴
2	0.185	0.266	1.35x10 ⁻³
3	0.370	0.133	6.75x10 ⁻⁴

i. Write the rate law.

answer :_____


- ii. What is the overall reaction order?
- answer :_____
- iii. What is the value of the rate constant, with units, for experiment 3?

a. For the reaction:

(5 marks)

$$2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$$

the following graph was made:

i. What order is the rate law for this reaction?

answer :_____

ii. What is the half-life of this reaction if the initial concentration is 1.28x10⁻² M?

answer :_____

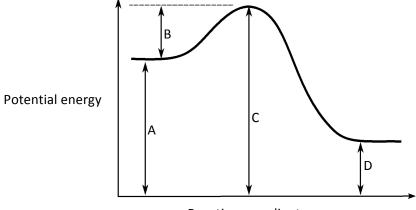
- b. For the same reaction: $2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$, a catalyst was introduced. Measurements showed the rate of reaction was directly proportional to the concentration of N_2O_5 with a rate constant of 0.055 min⁻¹ at 25°C. (4 marks)
 - i. What order is the rate law for this catalyzed reaction?

answer :_____

ii. Calculate the time that it will take for the $[N_2O_5]$ to fall from 1.28×10^{-2} M to 0.32×10^{-2} M with the catalyst at 25°C.

answer i. order:_____

answer ii. time with catalyst:_____


a. Consider this two-step mechanism for a reaction

(3 marks)

$$NO_2(g) + C\ell_2(g) \longrightarrow C\ell NO_2(g) + C\ell(g)$$
 (slow)

$$NO_2(g) + C\ell(g) \longrightarrow C\ell NO_2(g)$$
 (fast)

- i. What is the overall reaction?
- ii. Identify the intermediates in the mechanism (if any)
- iii. What is the predicted rate law?
- b. For the activation energy diagram shown, the following statements are True or False? (3 marks)

Reaction coordinate

		True	False
i.	ΔE reaction = A – D		
ii.	The reaction is exothermic		
iii.	D represents the energy of the products		
iv	E _a (forward) = C – A		
٧.	E _a (forward) > E _a (reverse)		
vi.	B represents the energy of the transition state.		

a.	Din	itroge	en trioxide	decompo	oses to n	itrog	en monoxide	and	oxygen gas in a	rigid co	ontainer a	at 300°C
	by	the	reaction	written	below.	At	equilibrium,	the	concentrations	are	$[N_2O_3] =$	4.36 M,
	[NC)] = 7.	.27 M and	$[O_2] = 1.8$	2 M.						(.	5 marks)

$$2N_2O_3(g) \longrightarrow 4NO(g) + O_2(g)$$

i.	For this	reaction.	calculate	Kς

answer K _c	:
-----------------------	---

ii. Calculate Kp

answer	<i>K</i> _p :
--------	-------------------------

iii. If only $N_2O_3(g)$ was initially present, what was its starting concentration? [Hint: the equilibrium concentrations are given in part a.]

answer $[N_2O_3(g)]_o$:

b. Given the equilibrium constants for the following reactions:

$$N_2(g) + \frac{1}{2}O_2(g) \implies N_2O(g)$$

$$K_1 = 2.7 \times 10^{-18}$$

$$N_2O_4(g) \implies 2 NO_2(g)$$

$$K_2 = 4.6 \times 10^{-3}$$

$$\frac{1}{2} N_2(g) + O_2(g) \implies NO_2(g)$$

$$K_3 = 4.1 \times 10^{-9}$$

Calculate the value of *K* for the following reaction.

$$2N_2O(g) + 3O_2(g) \implies 2N_2O_4(g)$$

_					\sim
()ı	ם ו ו	st	\sim	n	×
\mathbf{u}	uc	ЭL	w		C

Consider the following exothermic reaction at equilibrium:

$$2C_4H_{10}(g) + 13O_2(g) \implies 8CO_2(g) + 10H_2O(g)$$

Predict the effect of each of the following on the equilibrium position of this system:

(3 marks)

		9	shift of the equilibriur	n
		to the left	no change	to the right
a.	The mixture is cooled and water vapour condenses			
b.	More C ₄ H ₁₀ (g) is added			
C.	The volume of the container is increased			
d.	He gas is added to increase the total pressure			
e.	The temperature is increased			
f.	A catalyst is added			

a.	A solution is made by diluting 25.0 mL of concediluted solution has a pH of 0.222, calculate the		
b.	If a 0.0100 M solution of caproic acid, a mono for the unique (and generally considered foul		
	for caproic acid.	, sinell of goals, has a pri o	(3 marks)
		answers : Ka	p \mathcal{K}_{a}

i. NaNO ₂			basic	neutral	acid	
iii. NaClO ₃	i.	NaNO ₂				
iv. NH ₄ I	ii.	CsCl				
v. KF	iii.	NaClO ₃				
	iv.	NH ₄ I				
	v.	KF				
vi. Li ₂ SO ₄	vi.	Li ₂ SO ₄				

. <u>W</u>	hich of the following combinations ca		(2.5 marks)
		buffer	not buffer
i.	HF/KF		
ii.	HBr/LiBr		
iii.	HCN/NaCN		
iv.	Ca(OH) ₂ /CaBr ₂		
v.	H₂O/oil		
		al	nswer :
	Iculate the ratio $[NH_3]/[NH_4^+]$ in an 50.	nmonia/ammonium chloride buffere	ed solution with a pH c (1.5 marks)

A 50.0 mL aliquot of 0.300 M nitrous acid (HNO ₂) is titrated with 0.500 M Ba(OH) ₂ a. Calculate the pH of the solution after the addition of 5.00 mL of Ba(OH) ₂	(4 marks ₎

Qu	estion 12 (Cont.)		
b.	Calculate the volume of Ba(OH) ₂ needed to reach the equivalence point		(2 marks)
		answer :	

c. What is the pH of the solution at equivalence point?

(3 marks)

a.	A 10.00 mL aliquot of a saturated solution of barium hydroxide, Ba(OH) ₂ , 0.0833 M HC ℓ to titrate it to the equivalence point. Calculate K_{sp} for Ba(OH) ₂ .	
	answ	ver :

a. For a particular reaction, ΔH = -32 kJ and ΔS = -98 J/K. Assume that ΔH and ΔS	do no	ot vary	with
temperature.		(3 m	arks)

i. At what temperature will the reaction occur spontaneously?

answer	:	

ii. If the temperature is increased from that in part (i), will the reaction be spontaneous or nonspontaneous?

answer	:	

c. Using the data in the table below determine whether iron(III) oxide can be reduced by carbon at 25°C. (4 marks)

$$Fe_2O_3(s) + 3C(s, graphite) \longrightarrow 2Fe(s) + 3CO(g)$$

Compounds	ΔH_f^0 (kJ·mol ⁻¹)	S ^o (J·mol ⁻¹ ·K ⁻¹)
Fe ₂ O ₃ (s)	-824	87.4
C(s, graphite)	0	5.8
Fe(s)	0	2 7.3
CO(g)	-110.5	198

The	standard	molar	free	energies	of	formation	of	NO ₂ (g)	and	$N_2O_4(g)$	at	25°C	are	51.8	40 k	J/mo	l and
98.08	85 kJ/mo	l, respe	ctive	ly.													

a.	What is the value of the standard molar free energy of formation (ΔG°)) in Joເ	iles for	the reaction
	written as follows at 25°C?			(2 marks

$$2NO_2(g) \longrightarrow N_2O_4(g)$$

b. What is the value of K_p (in atm) for the same reaction at 25°C?

(3 marks)

Laboratory: Colligative properties

(4 marks)

Objective: to find the molar mass of phenanthrene.

In this experiment, the freezing point of two substances will be measured:

Part 1. Pure cyclohexane, C_6H_{12} (solvent) $K_f = 20.2 \text{ kg.}^{\circ}\text{C.mol}^{-1}$.

Part 2. A solution of phenanthrene, a non volatile covalent compound, dissolved in cyclohexane.

The molar mass of phenanthrene will be obtained from the freezing point depression

Data sheet.

PART 1

a.	Mass of the empty test tube with stopper:	131.7552 g
b.	Mass of the test tube with stopper and 25.0 mL cyclohexane:	150.6133 g
c.	Freezing point of pure cyclohexane:	6.348°C

PART 2

The same solution from part 1 is used for part 2

d. Mass of the test tube with stopper, cyclohexane and phenanthrene: 151.3124 g
e. Freezing point of the cyclohexane + phenanthrene solution: 2.141°C

Calculations:

Molar mass of	phenanthrene:	
Widiai illass di	phenantinene.	

1A Periodic Table of the Elements 8A										8A								
	1																	2
1	H						atomi	ic num	ber									He
	1.008	2A			6								3A	4A	5A	6A	7A	4.003
	3	4			C -	-	symb	ol					5	6	7	8	9	10
2	Li	Be			12.01	L							В	C	N	0	F	Ne
	6.941	9.012					atomi	ic mass	5				10.81	12.01	14.01	16.00	19.00	20.18
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	Cl	Ar
	22.99	24.31	3B	4B	5B	6B	7B	8B	9B	10B	1B	2B	26.98	28.09	30.97	32.07	35.45	39.95
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	85.47	87.62	88.91	91.22	92.91	95.94	98.00	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	132.9	137.3	138.9	178.5	181.0	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	209.0	210.0	222.0
	87	88	89	104	105	106	107	108	109	110	111	112						
7	Fr	Ra	Aca	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu					1		
	223.0	226.0	227.0	261.0	262.0	263.0	262.0	265.0	266.0	269.0	272.0	277.0				= met	alloid	
				r	1	1	1	1		1	1	1	1	1	1		1	Ī
				58	59	60	61	62	63	64	65	66	67	68	69	70	71	
	*Lan	thanid	es	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
				140	141	144	145	150	152	157	159	163	165	167	169	173	175	
				90	91	92	93	94	95	96	97	98	99	100	101	102	103	
	ªAo	ctinides	;	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
	232 231 238 237.1 244 243 247 247 251							252	257	258	259	260						

Dissociation constants (all values are at 25°C)

compound	formula	Ka	compound	formula	K _b
hydrogen sulfate ion	HSO ₄	$1.2 \times 10^{-2} (K_{a2})$	ethylamine	C ₂ H ₅ NH ₂	5.6x10 ⁻⁴
hydrofluoric acid	HF	7.2x10 ⁻⁴	methylamine	CH ₃ NH ₂	4.4x10 ⁻⁴
nitrous acid	HNO ₂	4.0x10 ⁻⁴	trimethylamine	(CH ₃) ₃ N	6.4x10 ⁻⁵
formic acid	нсоон	1.8x10 ⁻⁴	ammonia	NH_3	1.77x10 ⁻⁵
benzoic acid	C ₆ H ₅ COOH	6.5x10 ⁻⁵	pyridine	C ₅ H ₅ N	1.7x10 ⁻⁹
acetic acid	CH₃COOH	1.8x10 ⁻⁵	aniline	C ₆ H ₅ NH ₂	3.8x10 ⁻¹⁰
propanonic acid	C ₂ H ₅ COOH	1.3x10 ⁻⁵			
hypochlorous acid	HCIO	2.9x10 ⁻⁸			
hydrocyanic acid	HCN	4.9x10 ⁻¹⁰	compound	formula	K_{w}
phenol	HOC ₆ H ₅	1.6x10 ⁻¹⁰	water	H ₂ O	1.0x10 ⁻¹⁴

Conversions: $R = 8.314 \text{ L.kPa.K}^{-1}.\text{mol}^{-1} = 8.314 \text{ J.K}^{-1}.\text{mol}^{-1} = 0.08206 \text{ L.atm.K}^{-1}.\text{mol}^{-1}$ 1 atm = 101.3 kPa = 760.0 mmHg or torr. $K = 273.15 + ^{\circ}\text{C}$