

Name:

first (print)

family (print)

date

Enthalpy of solution : Table of data and results

DATA (must be filled in ink)

Mass of $\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$ (recorded ± 0.0001 g) $m =$ _____ g

Volume of water (recorded ± 0.1 mL) $V =$ _____ mL

Initial temperature of the solution (before reaction) $T_{\text{initial}} =$ _____ $^{\circ}\text{C}$

Final temperature of the reaction (after reaction) $T_{\text{final}} =$ _____ $^{\circ}\text{C}$

Results (calculations can be completed in pencil)

Mass of water used ($\rho_{\text{water}} = 0.998$ g/mL) $m =$ _____ g

Total mass of the solution ($\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$ + water) $m_{\text{sol}} =$ _____ g

Temperature change of the solution ($\Delta T_{\text{sol}} = T_{\text{final}} - T_{\text{initial}}$) $\Delta T_{\text{sol}} =$ _____ $^{\circ}\text{C}$

Heat absorbed / lost by the solution ($Q_{\text{sol}} = m_{\text{sol}} c_p \Delta T_{\text{sol}}$) $Q_{\text{sol}} =$ _____ J

Heat of solution of the reaction ($Q_{\text{reaction}} = -Q_{\text{sol}}$) $Q_{\text{reaction}} =$ _____ J

Mole of $\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$ used (mol.mass: 248.19 g/mol) $n =$ _____ mol

Molar enthalpy of solution of $\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$ $\Delta\bar{H} = Q/\text{mol} =$ _____ **kJ/mol**

%error = _____ %

Note: Never round off your numbers throughout a calculation, always keep the maximum number available. Round-off only the final answer.

Sample calculations

Total heat absorbed / released by the solution ($Q_{\text{sol}} = m c_p \Delta T$): (1 mark)

Enthalpy of solution of $\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$ ($\Delta\bar{H}_{\text{sol}} = Q_{\text{sol}} / n$): (1 mark)

$$\% \text{error} = \frac{|\text{value obtained} - \text{value literature}|}{\text{value literature}} \times 100\%$$

(1 mark)

(note: for $\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$: $\Delta\bar{H}_{\text{sol}} = 48.8 \text{ kJ/mol.}$).