

DAWSON COLLEGE
DEPARTMENT OF CHEMISTRY & CHEMICAL TECHNOLOGY

FINAL EXAMINATION CHEMISTRY 202-NYB-05

May 21, 2010
9:30 – 12:30

Print your Name: _____

MARK DISTRIBUTION

Student Number: _____

INSTRUCTORS: *Please circle the name of your instructor:*

J. Ali	I. Dionne	M. Haniff
D. Baril	M. Di Stefano	S. Holden
O. Behar	N. Duxin / Y-S. Uh	S. Mutic

INSTRUCTIONS:

This exam set consists of **16** questions. Please ensure that your copy of this examination is complete.

Answer all questions in the space provided.

1. Calculators may not be shared. Programmable calculators are not permitted.
2. No books or extra paper are permitted.
3. In order to obtain full credit, you must show the method used to solve all problems involving calculations and express your answers to the correct number of significant figures.
4. Your attention is drawn to the College policy on cheating.
5. A Periodic Table is provided. (last page).
6. If a mathematical equation is used to solve a problem, the equation should be clearly written.
7. Write your answer in the appropriate space when required.

USEFUL DATA:

Avogadro's Number $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Gas Constant $R \left\{ \begin{array}{l} = 0.08206 \text{ L} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \\ = 8.314 \text{ L} \cdot \text{kPa} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \\ = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \end{array} \right.$

1 atm = 101.3 kPa = 760 mmHg = 760 torr

1 J = 1 kg·m²·s⁻²

101.3 J = 1 L·atm

1.	/ 8
2.	/ 5
3.	/ 3
4.	/ 6
5.	/ 5
6.	/ 8
7.	/ 6
8.	/ 6
9.	/ 9
10.	/ 7
11.	/ 6
12.	/ 7
13.	/ 7
14.	/ 6
15.	/ 6
16.	/ 5
TOTAL	
/100	

Question 1

Ethanol is the common alcohol with molecular formula C_2H_5OH . An alcohol-water solution is prepared by dissolving 10.00 cm^3 of ethanol, with density $d_{\text{ethanol}} = 0.789\text{ g/cm}^3$, in a sufficient volume of water to produce 100.00 cm^3 of solution. Density of solution is $d_{\text{soln}} = 0.932\text{ g/cm}^3$.

For a given solution calculate the following for ethanol:

a. the mass percent

(2 marks)

Ans. Mass%: _____

b. the molarity

(2 marks)

Ans. molarity: _____

c. the molality

(2 marks)

Ans. molality: _____

d. the mole fraction.

(2 marks)

Ans. Mole fraction: _____

Question 2

Toluene, C₇H₈ is a component of gasoline (octane, C₈H₁₈). It is present in gasoline as an octane booster at concentrations between 3 to 5% by mass (25% in racing cars gasoline).

Consider a solution of octane with 20.% by mass of toluene at 20°C

a. Calculate the total vapor pressure of this solution

(3 marks)

Data: $P^\circ_{\text{octane}} = 10.5 \text{ mm Hg at } 20^\circ\text{C}, T_b = 126^\circ\text{C}$

$P^\circ_{\text{toluene}} 22 \text{ mm Hg at } 20^\circ\text{C}, T_b = 111^\circ\text{C}$

ans. total vapor pressure: _____ (1 mark)

b. Calculate the mole ratio of toluene to octane in the vapor phase above the solution

ans. mole ratio: toluene/octane: _____

c. If the actual vapor pressure measured is 15.2 mm Hg, will the boiling point of this solution be **higher** (1 mark) or **lower** than the one expected from Raoult's law? Explain.

Question 3

A 0.461 g sample of cumene, a non-volatile non-ionic compound, is dissolved in 10.0 g cyclohexane (C_6H_{12}), producing a solution that freezes at $-1.25^{\circ}C$. Cyclohexane has a normal freezing point of $6.50^{\circ}C$ and a freezing point depression constant of $20.2^{\circ}C/m$. What is the molar mass of cumene? *(3 marks)*

Ans. Mol. mass cumene: _____

Question 4

Hydrofluoric acid, (HF) is a weak acid that can be used in the fluoridation of water. An aqueous solution of 0.100 M HF has an osmotic pressure of 2.64 atm at 25°C.

a. Calculate the van't Hoff factor for HF at this concentration

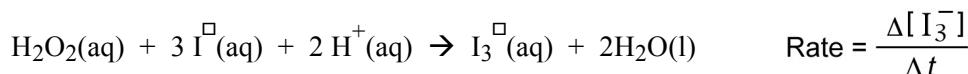
(2 marks)

Ans. van't Hoff factor: _____

b. Does it differ from the maximum van't Hoff factor expected for a monoprotic acid?

If so, explain why.

(2 mark)


c. What is the percent ionization of HF at this concentration?

(2 marks)

Ans. % ionization: _____

Question 5

Iodide ion is oxidized in acidic solution to triiodide ion I_3^- by hydrogen peroxide.

A series of four experiments was run at different concentrations, and the initial rates of I_3^- formation were determined (see table).

	Initial concentration ($\text{mol}\cdot\text{L}^{-1}$) H_2O_2	Initial concentration ($\text{mol}\cdot\text{L}^{-1}$) I^-	Initial concentration ($\text{mol}\cdot\text{L}^{-1}$) H^+	Initial rate ($\text{mol}\cdot\text{L}^{-1}\cdot\text{s}^{-1}$)
Exp 1	0.010	0.010	0.00050	1.15×10^{-6}
Exp 2	0.020	0.010	0.00050	2.30×10^{-6}
Exp 3	0.010	0.020	0.00050	2.30×10^{-6}
Exp 4	0.010	0.010	0.00100	1.15×10^{-6}

a. From the table above, obtain the reaction orders with respect to each of the following species:

(3 marks)

Ans. Reaction order: H_2O_2 : _____ I^- : _____ H^+ : _____

b. Find the rate constant with its units.

(2 marks)

Ans. rate constant: _____

Question 6

The reaction below was monitored as a function of time at a temperature of 400 K:

A plot of $1/[\text{NOCl}]$ against time yielded a straight line with slope of $6.7 \times 10^{-4} \text{ L} \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$.

a. Write the rate law for the reaction.

(2 marks)

b. What is the half-life for the reaction if the initial concentration of NOCl is 0.20 M ?

(2 marks)

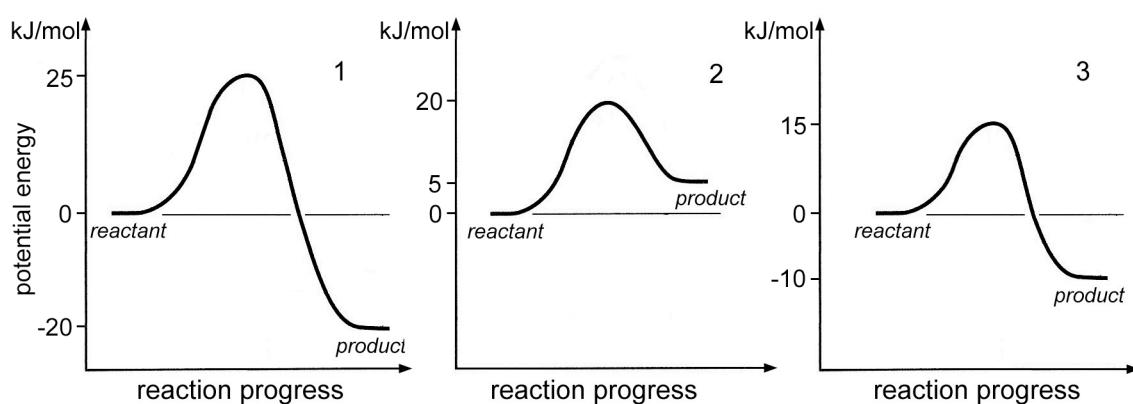
Ans. half-life: _____

c. If the initial concentration of NOCl is 0.35 M , what is the concentration of NOCl after 5.0 min?

(2 marks)

Ans. $[\text{NOCl}]$ after 5.0 min: _____

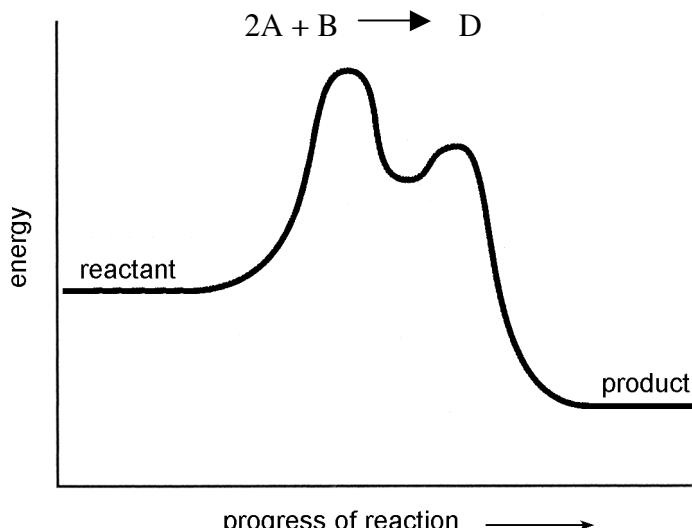
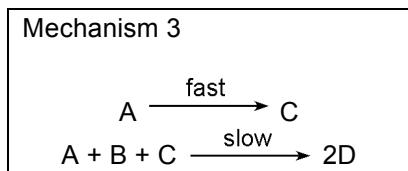
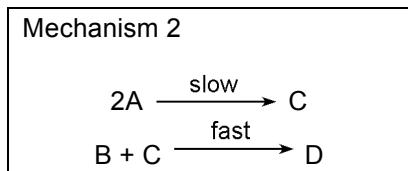
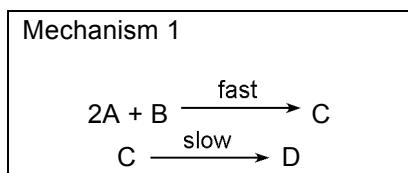
d. If the initial concentration of NOCl is 0.35 M , How long will it take for the concentration to drop to 20% of its original value?


(2 marks)

Ans. time after 20% drop: _____

Question 7

a. Consider the potential energy profiles for three different chemical reactions.





(2 marks)

Indicate which reaction is the slowest one. Explain your choice

b. Consider the potential energy profiles for a chemical reaction.

(2 marks)

Circle the proposed mechanism that is consistent with the reaction profile shown and explain your choice.

c. Beside concentration and pressure, give two parameters you can change that could affect the reaction rate of a chemical reaction:

(2 marks)

i. _____

ii. _____

Question 8

At elevated temperature (997°C) limestone dissociates according to the equation

a. If 50.0 g CaCO_3 (100.1 g/mol) is placed in an evacuated 4.00 L container and heated up to 997°C, (2 marks) how many grams of CaCO_3 will decompose if the pressure at equilibrium is 392 kPa?

b. If the volume of the container is expanded to 10.0 L at 997°C, what will be the CO_2 pressure at (1 mark) equilibrium?

(1 mark)

c. Calculate K_c for this reaction at 997°C

(2 marks)

d. Predict the effect of each of the following changes will have on the equilibrium position.

change	equilibrium position shift		
	to the left	no change	to the right
i. CO_2 is added	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
ii. CaCO_3 is added	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
iii. Pressure is increased (adding N_2 gas, volume unchanged)	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
iv. The temperature is increased	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

Question 9

Consider the following set of data:

Formula	K_a (at 25°C)
$[\text{Al}(\text{H}_2\text{O})_6]^{3+}$	1.4×10^{-5}
HNO_2	4.0×10^{-4}
HF	7.2×10^{-4}

a. What is the strongest acid in the table? _____ (1 mark)

b. With the help of the table, arrange the following in order of most basic to least basic: (2 marks)

Most basic _____ > _____ > _____ Least basic

c. What is the value of K_b for F^{\square} at 25°C ? (2 marks)

Ans. K_b : _____

d. Write the chemical reaction represented by the K_b for F^{\square} in water and place the species involved in the appropriate place (2 marks)

e. At 40°C, $K_w = 2.9 \times 10^{-14}$. What is the neutral pH of water at this temperature? (2 marks)

Ans. _____

Question 10

a. A solution of the basic oxide CaO is prepared by adding water to 0.28 g CaO to make 0.50 L of solution.

i. Write the equations for the reactions that occur when CaO is dissolved in water (1 mark)

ii. Assuming that ion-pairing is non-existent, what is the expected pH of this solution? (2 marks)

ans. pH : _____

b. For which of the following salts will the solubility depend on pH ? (2 marks)

		pH sensitive	pH independent
i.	KClO_4	<input type="checkbox"/>	<input type="checkbox"/>
ii.	$\text{Pb}(\text{OH})_2$	<input type="checkbox"/>	<input type="checkbox"/>
iii.	AgF	<input type="checkbox"/>	<input type="checkbox"/>
iv.	$\text{Ba}(\text{NO}_3)_2$	<input type="checkbox"/>	<input type="checkbox"/>

c. For each of the following salts dissolved in water, predict whether the aqueous solution will be acidic, neutral or basic. (2 marks)

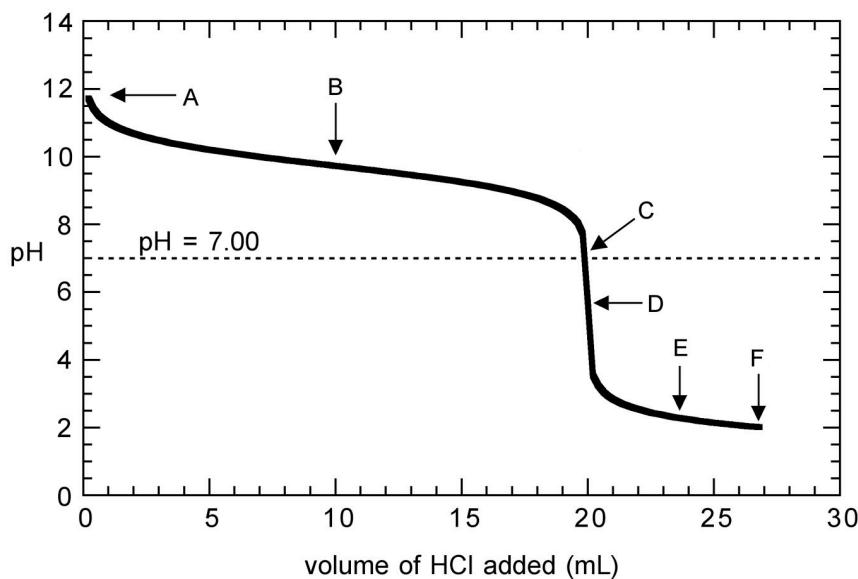
		acid	neutral	basic
i.	RbOH	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
ii.	NaIO	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
iii.	NH_4OH	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
iv.	LiClO_3	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

Question 11

a. Consider 0.500 L of a buffer that consists of 1.50 M KClO ($K_a \text{ HClO} = 3.5 \times 10^{-8}$) and 0.50 M HClO . (4 marks)
What will be the pH of this buffer after the addition of 250 mL of 1.0 M HNO_3 ?

ans. pH : _____

b. Which of the following mixtures would result in a buffer solution when 100 mL of each of the two solutions are mixed together? (2 marks)



	buffer	not a buffer
i. 0.1 M KOH and 0.2 M NH_3	<input type="checkbox"/>	<input type="checkbox"/>
ii. 0.2 M HCl and 0.2 M NH_3	<input type="checkbox"/>	<input type="checkbox"/>
iii. 0.2 M HNO_3 and 0.4 M NaNO_3	<input type="checkbox"/>	<input type="checkbox"/>
iv. 0.1 M HNO_3 and 0.2 M NaF	<input type="checkbox"/>	<input type="checkbox"/>

Question 12

Consider the following titration curve of trimethylamine (C_3H_9N) a weak base with 0.100 M HCl at 23°C .

Initial solution:

$50.0\text{ mL of } C_3H_9N, 4.00 \times 10^{-2}\text{ M}$

ans.

$K_b:$ _____

b. Which letter (A to F) on the graph corresponds to each of the following?

letter

The equivalence point

The point of half-neutralization

The point corresponding to the pK_a of $C_3H_9NH^+$

c. When $15.0\text{ mL of } 0.100\text{ M HCl}$ is added, the pH of the solution is 9.255 . Calculate K_b of trimethylamine.

(1 mark)

(3 marks)

(3 marks)

Question 13

a. A saturated aqueous solution of $\text{Mg}(\text{OH})_2$ has a $p\text{H}$ of 10.08, what is the K_{sp} of $\text{Mg}(\text{OH})_2$? (2 marks)

ans. K_{sp} : _____

b. The K_{sp} of cobalt(III) hydroxide is 2.5×10^{-43} . Calculate the solubility of $\text{Co}(\text{OH})_3$ in water in mol/L (2 marks)

ans. solubility (mol/L): _____

c. Does a precipitate form when 25 mL of 0.10 M lithium nitrate LiNO_3 , is mixed with 35 mL of 0.75 M sodium carbonate Na_2CO_3 ? ($K_{\text{sp}} \text{ Li}_2\text{CO}_3 = 8.15 \times 10^{-4}$) Show your work. (3 marks)

ans: yes no

Question 14

a. A system is made of a cylinder of gas with a piston. When 4.0 kJ of heat is transferred from the surroundings to the system, the gas in the piston expands from 12 L to 27 L and performs work on the surroundings. If the system gains 201 J of internal energy from this process, against what constant external pressure, in atmospheres, is the piston working? (3 marks)

Ans. pressure (atm): _____

b. Bromine is a liquid at room temperature. Calculate the freezing point of bromine if its heat of fusion is $+5.79 \text{ kJ}\cdot\text{mol}^{-1}$ and its entropy of fusion is $21.8 \text{ J}\cdot\text{K}^{-1}\cdot\text{mol}^{-1}$. (3 marks)

Ans. T_f bromine: _____

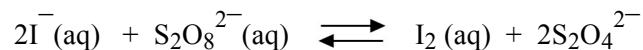
Question 15

a. Circle the substance in each of the following pairs that would have the greater entropy.

(2 marks)

i. $\text{H}_2\text{O} (\ell, 1 \text{ mol}, 75^\circ\text{C}, 1 \text{ atm})$ or $\text{H}_2\text{O} (\text{g}, 1 \text{ mol}, 75^\circ\text{C}, 1 \text{ atm})$ ii. $\text{Fe} (\text{s}, 50.0 \text{ g}, 5^\circ\text{C}, 1 \text{ atm})$ or $\text{Fe} (\text{s}, 0.80 \text{ mol}, 5^\circ\text{C}, 1 \text{ atm})$ iii. $\text{Br}_2 (\ell, 1 \text{ mol}, 8^\circ\text{C}, 1 \text{ atm})$ or $\text{Br}_2 (\text{s}, 1 \text{ mol}, -8^\circ\text{C}, 1 \text{ atm})$ iv. $\text{SO}_2 (\text{g}, 0.312 \text{ mol}, 32.5^\circ\text{C}, 0.110 \text{ atm})$ or $\text{SO}_2 (\text{g}, 0.284 \text{ mol}, 22.3^\circ\text{C}, 15 \text{ atm})$ b. Methyl isothiocyanate, $\text{CH}_3-\text{N}=\text{C}=\text{S}$, is a highly irritating pesticide. It can be prepared by reacting carbon disulfide with methylamine. Given the thermodynamic data at 25°C below, calculate the standard molar entropy of methyl isothiocyanate.

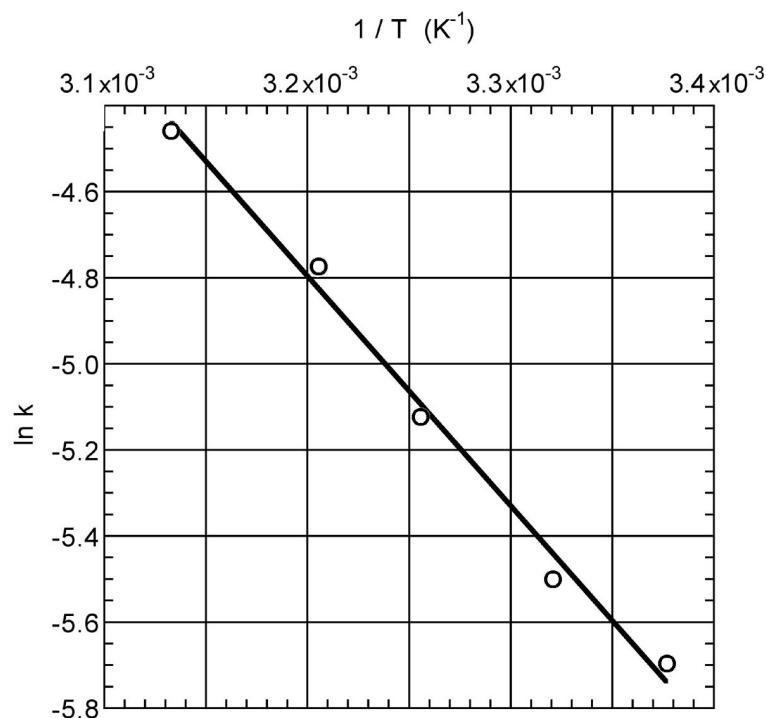
(4 marks)


	$\text{CS}_2 (\text{g})$	+	$\text{CH}_3\text{NH}_2 (\text{g})$	\rightarrow	$\text{CH}_3-\text{N}=\text{C}=\text{S} (\text{g})$	+	$\text{H}_2\text{S} (\text{g})$
$\Delta G^\circ (\text{kJ}\cdot\text{mol}^{-1})$	67.15		32.09		144.35		-33.56
$\Delta H^\circ (\text{kJ}\cdot\text{mol}^{-1})$	117.36		-22.98		130.96		-20.63
$S^\circ (\text{J}\cdot\text{mol}^{-1}\cdot\text{K}^{-1})$	237.73		243.30		?		205.69

Ans: _____

Question 16

In the laboratory experiment 4, you want to determine the activation energy of the following reaction:


(5 marks)

Where the reaction rate is: $\text{Rate} = -[\Delta\text{I}^-]/2\Delta t$ and the rate law for this reaction is: $\text{Rate} = k[\text{I}^-][\text{S}_2\text{O}_8^{2-}]$

By recording the reaction rate of several experiments at different temperatures, the following graph based on the linear form of the Arrhenius equation is obtained.

Arrhenius plot for the determination of the activation energy for the reaction of iodide with peroxydisulfate

From this graph, calculate the activation energy (with units) for this reaction.

Ans. E_a : _____

Periodic Table of the Elements

= metalloid

*Lanthanides	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140	141	144	145	150	152	157	159	163	165	167	169	173	175
^a Actinides	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232	231	238	237.1	244	243	247	247	251	252	257	258	259	260